Remote Java classpath enumeration with EnumJavaLibs

To discover a deserialization vulnerability is often pretty straightforward. When source code is available, it comes down to finding calls to readObject() and finding a way for user input to reach that function. In case we don’t have source code available, we can spot serialized objects on the wire by looking for binary blobs or base64 encoded objects (recognized by ‘rO0..’). The hard part comes with exploitation. Sure you can throw all exploits from ysoserial at it and hope for the best, but if it doesn’t work there are not much other things to try.

The big piece of information which is missing at this point, is information about the classpath of the remote application. If we know what libraries are loaded, we might be able to construct a gadget chain (or adjust the existing ysoserial exploit to match the version of the library on the remote application, for example). That’s where the idea of EnumJavaLibs comes from: just let it deserialize arbitrary objects from different (popular) 3rd party Java libraries. More specifically:

  1. Create a local database of the most common Java libraries
  2. For each of these libraries, find a class that is serializable
  3. Create an instance of this object, serialize it, and send it to the remote application
  4. If we get a ClassNotFoundException back, we know the library is not on the classpath

We have released the code of this project on GitHub, together with a tool that can build a database of libraries (JavaClassDB.py). You can download the pre-compiled version over here.

JMX/RMI

JMX/RMI is a perfect example where Java classpath enumeration can be done, as it meets the above conditions. When the endpoint is running a vulnerable Java version (that is, before JEP290 implementation), JMX/RMI endpoints are vulnerable by default (regardless whether authentication is required). This is because a JMX/RMI endpoint exposes the RMIServerImpl_Stub.newClient(Object o) function which deserializes any object provided (RMI functions that accept parameters of type Object should always be a red flag).

EnumJavaLibs has a specific ‘RMI’ mode which allows you to specify IP and port of the RMI service. It will then invoke the newClient() function for each serialized object from the jars in the database. Upon deserialization error, we get the full stacktrace back via RMI, so we can easily read whether the class was found or not – and conclude if the library is loaded in the classpath.

Web applications

Because the way to probe web applications is highly specific case to case, Enumjavalibs will not perform the HTTP requests for you. Instead, it will create a CSV file with (classname, base64_encoded_serialized_object) for you, which you can then use to build requests yourself. One way to do this would be to use Burp intruder.

Internals

The tool uses a few Java ‘tricks’ which I would like to give some more details about. The first one is dynamic loading of libraries. This is made a lot harder (but not impossible) since Java 11, which is why the tool should be compiled with Java 8. Using URLClassLoader.addUrl(), it is possible to load a jar file specified by its path. Because this function is not exposed by the JDK, reflection is required to make it accessible.

Once we load the jar, we go through all its classes one-by-one, and try to serialize them. It doesn’t matter to us which class, all we want is some class from the jar file. If the remote server is able to deserialize this class, there’s a high probability the library it comes from is loaded. But how do we serialize an arbitrary class from a jar file? Normally serialization happens as follows:

  1. Instantiate an object of the class with ‘new …’
  2. Serialize the object using ObjectOutputStream

To instantiate the object, we need information about its constructors though. We could get that via reflection, but what if it has a constructor that takes as argument another object? Or what if some conditions need to be met for these arguments, or otherwise the constructor will throw an exception? This results in a complex situation, which is hard to handle automatically. Fortunately, there is a way to instantiate objects without invoking constructors. And it’s not pretty. But it works.

It’s called the Unsafe class and it let’s you do things that Java would normally forbid you to (for good reasons). One of them being instantiating classes without invoking the constructor. This works for our purposes, because at the remote side the ClassNotFoundException is thrown based on the name of the class – we don’t actually care about it being initialized properly. So after instantiation via Unsafe, we can serialize the object and – depending how you run the tool – send it off over RMI or store the Base64 encoded version in the output file.

False positives

It might happen that the class which is deserialized at the remote server, could actually be traced back to multiple libraries. Recall that we distinguish classes based on the combination of FQDN and SerialVersionUID. So when the serializable class doesn’t specify a custom SerialVersionUID in the source code, it is not unthinkable that a collision occurs (which means FQDN is the same). But even in this case we can still be pretty sure about which library is used – just not the exact version. Take for example the FQDN “org.apache.commons.fileupload.DiskFileUpload”; we can be pretty sure it comes from the commons-fileupload library, even though we might be unable to identify the exact version because the SerialVersionUID is the same between different versions.

Hey! Red Timmy Security will be at Blackhat Las Vegas this year too! Check out our trainings!

Practical Web Application Hacking Advanced 1-2 August and 3-4 August 2020.